
Cell viability assays with Mithras LB 940

Emmanuelle Estace¹, Veronika Keravec¹, Bettina Felletschin²

Introduction

Actinomycin D (picture 1) is a chemical compound with the formula $C_{62}H_{86}N_{12}O_{16}$ and molecular weight of 1255.41 g/mol. It is used as an anti-mitotic and an intercalating agent of DNA. It inhibits the synthesis of mRNA by intercalation into the DNA strand and thereby preventing the polymerase activity.

In this study we tested the effects of two concentrations of Actinomycin D on CHO cells. The cellular viability of those cells was assessed by different cell viability agents/assay kits like Alamar Blue (Invitrogen), UptiBlue (Interchim) and Resazurin (Interchim).

Picture 1 : Actinomycin D

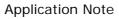
The assays are easy-to-use as no cell extraction or lysis steps are required in contrast to other commonly used cell proliferation assays. All indicators are non-toxic and water soluble thus eliminating washing/fixing steps.

The systems are based on a dye (Resazurin) which is highly sensitive to the redox potential of cell growth. The dye changes by responding to the chemical reduction of growth medium from the oxidized (non-fluorescent, blue) to the reduced (fluorescent, red) form.

¹ INSERM Unité 644 - Medicine and Pharmacy Institute – University of ROUEN,

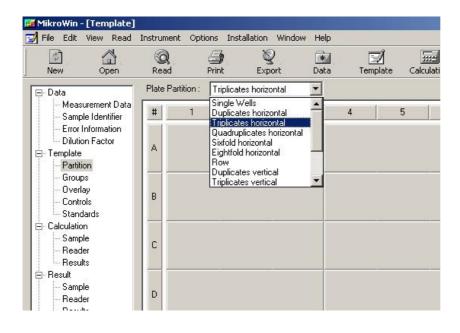
⁷⁶¹⁸³ ROUEN Cedex France ² BERTHOLD TECHNOLOGIES, Bad Wildbad, Germany, Bettina.Felletschin@Berthold.com

The Mithras LB 940 is a multimode plate reader with an unique optical design (DOPS – Dedicated Optical Path System) to ensure optimized performance for the detection technologies implied. These are


- luminescence
- BRET/BRET²
- fluorescence
- UV/VIS absorbance
- fluorescence polarization
- AlphaScreen[®]
- TRF
- HTRF[®]

Picture 2: Mithras LB 940 multimode reader

In addition accessory options, e.g. reagent injectors, temperature control and cooled PMT detection units are available.


Instrument Settings

Following settings in MikroWin 2000 were used:

asurement Sequence:					OK
	Operations:	Operation	Name:	Fluor. Label	Cano
☑ </td <td>× テ チ</td> <td>Name Fluor. Label Counting Time 0.10 Lamp Energy 7000 Excitation Filter 520 Excitation Aperture Normal Emission Filter 590 Counter position Top Meas: operation by Plate 2nd Measurement No</td> <td>Counting Time: Lamp Energy: Excitation Filter: Excitation Aperture: Emission Filter: Counter position:</td> <td>0.1 (0.05 - 600 s) 7000 (0 - 65535) 520 (10) Alamar Blue - Slot A3 ▼ C Small Image: Normal 590 (20) Alamar Blue - Slot A3 ▼ Image: Top Image: Bottom</td> <td></td>	× テ チ	Name Fluor. Label Counting Time 0.10 Lamp Energy 7000 Excitation Filter 520 Excitation Aperture Normal Emission Filter 590 Counter position Top Meas: operation by Plate 2nd Measurement No	Counting Time: Lamp Energy: Excitation Filter: Excitation Aperture: Emission Filter: Counter position:	0.1 (0.05 - 600 s) 7000 (0 - 65535) 520 (10) Alamar Blue - Slot A3 ▼ C Small Image: Normal 590 (20) Alamar Blue - Slot A3 ▼ Image: Top Image: Bottom	
		۲ <u>۰</u> ۰۰	Operation Mode:	C By wells	
E Batch Plate R	epeats: 1	Robot	Second Measur	rement	
mperature Control			West and the second second		
Temperature	25 *	Celsius 🔲 Barcode	Excitation Filter:	F355 (Umbelliferone) - Slot A1	
Multi Plate Data File M	ode		Emission Filter:	F460 (Umbelliferone) - Slot A1	

Alternatively a filter combination of 530/10nm for excitation and 600/10nm for emission can be used as well.

Triplicates were selected in the Plate Partition part:

Under Options/Results both the "Reader" and "Sample" matrix were added to the "Results" matrix to get the sample (name) information, single well data and average of the three wells displayed into a single screen:

New Open	Q Read	Print	Export	🔭 Data	Template	Calculation	Resu		Graphics		
⊡-Data Measurement Data		Calculation S	1	Valid Assay		7		147			
- Sample Identifier	#	1	2	3	4	5		6	7	8	9
	A	0	0	0 0 Control		0	0	0 0 Act D 0.5 µM	0	0	Act D 2 µt
Groups Overlay Controls	в	0	Options Result View Combin	ation						0	Act D 2 µl
Standards ⊡-Calculation Sample Reader Besults	c	0	Matrix Results	•	Combinat Matrix Reader Sample		Order No. 1 No. 2	Add Matrix Delete Matri	J Sample	0	Act D 2 µł
⊡-Result Reader Results	D	0			Sample		NU. 2		Reader	0	Act D 2 µl
General Statistics General Statistics User Statistics 1 User Statistics 2	E	0			1.				0	0	Act D 2 µl
	F	0					1		0	0	ו Act D 2 און
Color Graphics Curve Fit Kinetics Scanning	G	0 -	U	U Control	ок	Cancel U		Apply U Act D 0.5 µM	Help 0	0	ا Act D 2 به
Selection Control History	н	0	0	0 0 Control		0	0	0 0 Act D 0.5 µM	0	0	Act D 2 µl

The print setup was set as the following:

Page Header File Names Measurement Data Sample Reader Results General statistics User statistics 1 User statistics 2 User statistics 3	Ŷ	Page Header File Names Sample < Matrix > Reader < Matrix > Results < Matrix > General statistics
Bar Graphics		Add Remove

	asuremen mplate file	t file : upti 120908 3h.da e : UptiBlue Test Be		Valid Assay	Measuremen Measuremen		
			– Echantillons / Donné	èes brutes / Moyer	ine		
_	1	_2 0	• 5 6	7 8	9 10	11	12
A	41160,0	Blank control well1 38220,0 38310,0 39230,0	40660,0 38380,	38826,7	Blank Act D 2 39940,0 37210,0	37270,0 38140,0	
в	37960,0	36620,0 36610,0 37063,3	Blank Act D 41700,0 38380,	0.5µM well2 0 38230,0 39436,7	Blank Act D 2 39910,0 39290,0	µM well 2 37350,0 38850,0	
c	712680	control well1 690880 682510 695357	Act D 479500 44885	0.5µM well1	Act D 2 509710 482670	µM well 1 490530 494303	
D	1,04E6	control well2 995900 997280 1,01E6	Act D 425400 39308	0.5µM well2	Act D 2 414950 379490	µM well 2 382760 392400	
E	799860	control well3 736130 739650 758547	Act D 504740 46900	0.5µM well3	Act D 2 474460 450620	µM well 3 445920 457000	
F	743230	control well4 749960 743980 745723	Act D 433490 41034	0.5µM well4	Act D 2 425530 401140	µM well 4 400410 409027	
G	702100	control well5 704980 703440 703507	Act D 512470 47557	0.5µM well5	Act D 2 402190 366120	µM well 5 367700 378670	
н	726930	control well6 727620 731460 728670	Act D 41 3690 38480	0.5µM well6	Act D 2 420880 387340	µM well 6 391810 400010	
Par Fil Rea Cal	surement ameter es der culation gram	Parameter loaded d Data file : upti 1 Template file : Up BertholdTech Mithr Plate Type: 8x12 p Name Counting Time [s] Excitation Fileer Excitation Fileer Excitation Apertur Lamp Energy Second Measurement Calculation Status HikroWin, Version	Fluor. Labe. 0.10 520 e Normal 7000	a: c:\program fil / 12:44:48 - 05/09/2008 / 10: 05 , (1.0.5.0), 5 H Heasurem Rmission Counter 1 Lation Time : 16/7 997; Assembly Code	Les\mikrowin 2000\par: :45:20 5/N: 33-6002, Embedde ent Mode b: Filter	amithras' d Version y Plate 90 op BF	\fluoresc
		1	2	3			_
			— Blank co	ontrol wel	1	→ :	Samp
	A	41160,0	38220,0	38310		→ 1	Three
				39230	,0,	→ ,	Avera

Methods

CHO cells were grown in IMDM medium (Invitrogen) supplemented with 10 % FCS (Fetal Calf Serum, Invitrogen), HT supplement (SIGMA) and penicillin/streptomycin (Invitrogen). The cells were cultivated in 75 cm² flasks (Falcon) in a humid atmosphere incubator at 37 °C under 5 % CO₂ to produce enough cells and then, after trypsination, seeded in 6 wells plates (Falcon) to perform the experiments. The medium was changed every 2 days until testing process.

Actinomycin D was prepared in IMDM medium and used at two concentrations (0.5 and 2 μ M) versus control (IMDM medium alone).

Alamar Blue (Invitrogen), UptiBlue (Interchim) or Resazurin (Interchim) was added each 150 μ L to the 6 well plates. The fluorescence readings were performed in 96 well plates to avoid toxic effects and less oxygenation. A volume of 100 μ L was transferred from the 6 well plates to the 96 well black plates (Nunc) to perform the readings with the Mithras LB 940 (Berthold Technologies).

As indicated in the kit instructions, the incubation time had to be evaluated according to the cell type. The incubation of CHO cells with UptiBlue and Resazurin was done then for 3 hours.

Cell density determination

First, cell density experiments were performed to determine the optimum cell numbers.

Four 6 wells plates were seeded with different cell densities: 0, 50 000, 100 000, 300 000 and 500 000 cells per well in 1.5 mL IMDM medium. After 2 days the cell culture medium was discarded, and the cellular monolayer was washed with 1 mL Ca^{2+/}Mg²⁺ free PBS solution. Finally, 1.5 mL IMDM fresh medium and 150 μ L UptiBlue, Alamar Blue or Resazurin solution (dilution 1/10e) were added to each well according to the manufacturer's instructions. Cells were kept in a humid atmosphere incubator at 37 °C and 5 % CO₂ for 3 hours. At the end of incubation, 100 μ L medium was taken in duplicate from each well and transferred into 96 well black plates for reading.

The readings were performed with Mithras LB 940 multimode reader and Mikrowin 2000 software. A fluorescence parameter file with an excitation wavelength at 520 nm and an

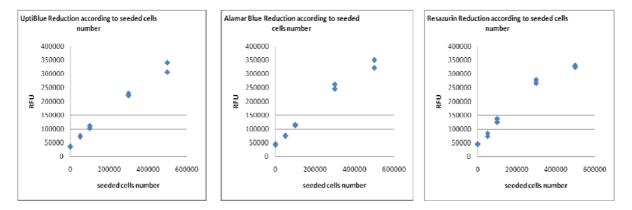
emission wavelength at 590 nm and a counting time of 0.1 s per well was used as described before in instrument settings.

Cytotoxicity Assay

The cytotoxicity assay was performed in 6 well plates with 100 000 cells per well with the same medium and volume as used before. After 4 days cell culture, the medium was removed and each well was replaced with fresh medium containing either Actinomycin D at 0.5μ M and 2μ M or fresh medium without any Actinomycin D (control). Plates containing all reagents but no cells were used as a negative control to determine the potential of non-cell-related reduction of UptiBlue, Resazurin or Alamar Blue over the experimental period. After 21 hours incubation 150 μ L Alamar Blue, Resazurin or UptiBlue solution was added to each well after medium removal procedure or not.

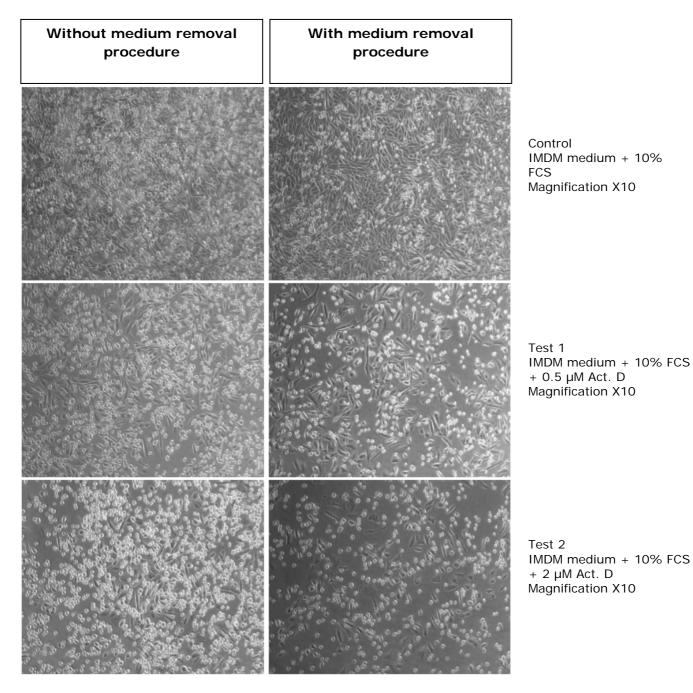
For medium removal procedure fresh medium (without any Actinomycin D) was added to each well after elimination of the old medium by aspiration. The 150 μ L fluorophore solution was added into this fresh medium. Without medium removal procedure the fluorophore solution was added directly into the old medium.

Then, incubation was continued for 3 hours under the same conditions. At the end of incubation, the same reading protocol and transfer to 96 well plates was performed as used for the cell density determination.

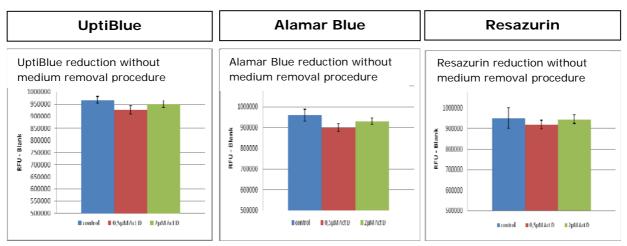

For protein quantification, the medium containing the fluorophore was discarded after the reading. The cells were washed with 2mL of Ca^{2+}/Mg^{2+} free PBS solution. Then 0.5mL of NaOH 1N solution was added to dissolve protein and to quantify protein content according to Lowry and al. (1951). The absorbance readings were performed with the Mithras at 650 nm.

Instituts

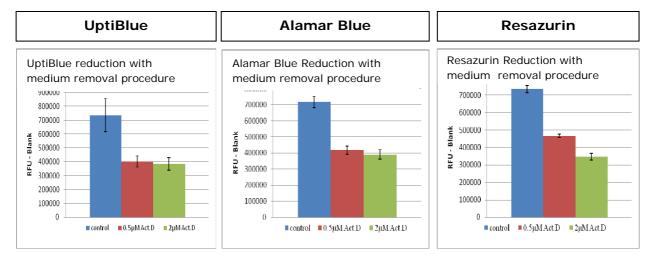
Results

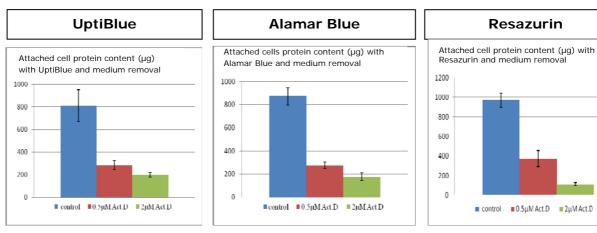

Picture 3: Results of cells density determination, relative fluorescence units according to the cell number

Picture 3 shows that the UptiBlue, AlamarBlue or Resazurin reduction was exactly proportional to the cell seeding number. With more than 300 000 cells the response approaches a saturation level. The reason may be either a depletion of fluorescent substrate and/or metabolic stress related to overcrowding.



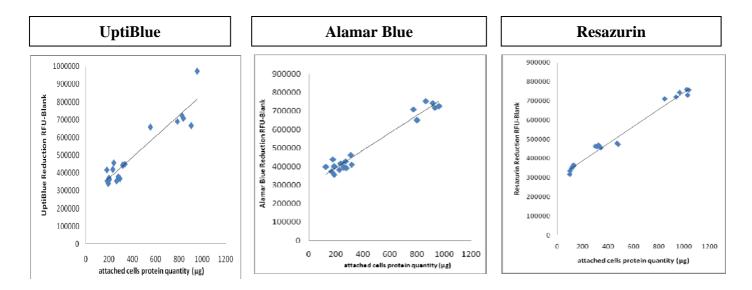
Picture 4 : Photographs of cell culture (with or without medium removal procedure)





Picture 5 : Comparison of UptiBlue, Alamar Blue and Resazurin reduction without medium removal procedure

Picture 6 : Comparison of UptiBlue, Alamar Blue and Resazurin reduction with medium removal procedure


Picture 7 : Comparison of attached cell protein content

Correlation between fluorophore reduction and attached cell protein content

Without medium removal procedure, neither by using UptiBlue, Alamar Blue or Resazurin differences between Actinomycin D solutions and control could be observed.

However, after medium change (medium removal procedure), a strong decrease of UptiBlue, Alamar Blue or Resazurin reduction in the Actinomycin D treated wells could be observed.

The CHO cells are specifically able to get suspended when they are in stress. In our case this metabolic stress was caused by the presence of Actinomycin D and the cells got suspended in culture medium.

According to the obtained results a part of the cells were still active. Finally, in our experimental conditions, it was necessary to discard medium containing suspended cells and add fresh medium before performing the cytotoxicity assay.

All different reagents used (UptiBlue, AlamarBlue and Resazurin) have shown comparable results.

Moreover, these experiments have shown showed a good correlation between the

chromophore reduction and the seeded cell numbers and the protein content of the attached cells.

Differences between the two Actinomycin D concentrations could be observed by the use of Resazurin as indicating reagent only. Additional measurements are necessary to get more detailed information.

Conclusion

Alamar Blue, UptiBlue and Resazurin are perfectly suited for performing cell viability and cytotoxicity assays in combination with the Berthold Mithras microplate reader.

The medium removal procedure before performing the cytotoxicity assay is essential to avoid influences of suspended cells and old medium.

Material:

- Mithras LB 940 (Berthold Technologies)
- Filters (Berthold Technologies): Excitation 520/10nm (39802) or Excitation 530/10nm (37996) Emission 590/20nm (37989) or Emission 600/10nm (40095) Absorbance filter 650/10nm (37999)
- CHO cells (Chinese Hamster Ovary)
- IMDM medium (Invitrogen)
- FCS (Fetal Calf Serum, Invitrogen),
- HT supplement (SIGMA)
- Penicillin/streptomycin (Invitrogen)
- 75 cm² flask (Falcon)
- Alamar Blue SKU# DAL1025 (Invitrogen)
- UptiBlue UP669412 (Interchim)
- Resazurin (Interchim)
- 96 wells black plates (Nunc)
- 6 wells plates (Falcon)

